Mistletoe Therapy in Cancer

Gurdev Parmar, ND

Integrated Health Clinic, Cancer Care Centre

European White-Berry Mistletoe (Viscum album)

Chronological specialties of European mistletoe

	Mistletoe	Higher organized plants	
Photosynthetic activity	Throughout the year	Rest in winter	
Development of vegetative and generatative organs	Simultaneous	In succession	
Flowering time	Late winter	Warm half of year	
Ripe fruits	Early winter	Summer or autumn	
All steps of development	Highly delayed	Normal	
Germination rest	Non-existent	Existent	

Morphological specialties of European mistletoe

	Mistletoe	Higher Organized Plants
Growth of roots	Sinker growth in direction of host tree, independent of gravity	Geotropic - according to gravity
Growth of shoots	In all directions (globular bush) independent of gravity and light	Heliotropic - in the direction of the sun
Germination	With light	Frequently in the dark
Photosynthesis	Upper surface and underside of leaves; all parts of the plant are green	Upper surface only
Formation of Organs	Delayed, juvenile, reduced (no roots, primitive flowers, no real seeds, primitive uniform leaves)	Normal

The Founders of Mistletoe Therapy in Oncology

He pointed out the idea:

Rudolf Steiner, PhD (1861-1925) Philosopher, Founder of Anthroposophy She developed and administered the first mistletoe injection products:

Ita Wegman, MD (1876-1943) Physician, Head of the Clinical-Therapeutic Institute (Switzerland)

History of Mistletoe Therapy

A) External and oral application

Hippocrates (460 – 377 b.C.) recommendations for spleen diseases.

Arabian physicians (10. – 12. century) & epilepsy, dizziness, cardiac insufficiency, dropsy, infertility.

Hildegard von Bingen (1098 – 1179)

hepatopathic conditions.

Herbal books of medieval times (15. century)

beneficial for wound-healing, softening, analgesic, birth easing.

History of Mistletoe Therapy

A) External and oral application

Paracelsus (1494 – 1541), John Colbatch (1670 – 1728) Specific against epilepsy.

Albrecht von Haller (1708 – 1777) \$ spasmolytic, gynecology.

Homeopathy (19. century)

Scongestive headache, dizziness, angina pectoris, asthma, rheumatism, uterine haemorrhage, depression.

Popular medicine in Central Europe (19. century)

hypertension, prophylactic against arteriosclerosis.

History of Mistletoe Therapy

B) Parenteral application

Gaulthier (1907)

Solution in blood pressure after i.v. application.

R. Steiner, I. Wegman (1917)

✤ injection therapy with mistletoe products against cancer.

Madaus (1938)

intracutaneous segmental therapy of degenerative and inflammatory joint diseases.

Dinkelaker/Kass (1982)

- Siscum album D3 D14 i.v.:
 - vegetative balancing, mind relieving, spasmolytic (blood vessel, bronchial tubes), analgesic (migraine, neuralgia).

HELIXOR[®] History

- 1971 Development of new mistletoe preparations named HELIXOR by the Association for Leukemia and Cancer Therapy in Stuttgart
- 1972 The first batch was successfully tested in cancer patients
- 1973-77 13 reports on clinical trials
- 1979-81 2 clinical trials published
- 1975 HELIXOR company founded in Marburg
- 1976 First registration of HELIXOR in Germany
- 1979 HELIXOR FOUNDATION for public welfare founded
- 1980 Relocation of HELIXOR company to Rosenfeld
- 1982 New registration of HELIXOR A/M/P according to the new German Drug Law

HELIXOR—Three Different Types

Fir mistletoe

• Viscum abietis \rightarrow HELIXOR[®] A

Apple tree mistletoe

• Viscum mali \rightarrow HELIXOR[®] M

Pine mistletoe

► Viscum pini → HELIXOR[®] P

Constituents of Mistletoe Extracts

	Structural types	Constituents	Effects on cancer cells	Effects on immunocompetent cells
	Glycoproteins	Mistletoe lectins ML I, II, III (RIP II)	Cytotoxicity by inhibition of the ribosomal protein synthesis + induction of apoptosis (intrinsic pathway)	Activation of macrophages Increase in eosinophils Release of TNF-α, IL-1, IL-2, IL-6
		Visalb CBA = cbML	Weak cytotoxicity	Adjuvant stimulation of immune response
/	Polypeptides	Viscotoxins A ₁₋₃ , B, 1-PS, U-PS	Cytotoxicity by lysis of cell membrane	Activation of macrophages Enhanced phagocytosis activity of granulocytes
	Oligo- and Polysaccharides	Arabinogalactane Rhamno-galacturonane	Indirect immune-mediated tumor inhibition	Stimulation of T-helper-cells (TH ₁ ↑, IFNγ ↑) Enhanced NK-cell activity
	Flavonoids	Derivates of quercetine	Induction of apoptosis	Antioxidative, anti-inflammatory + antinociceptive effects
	Phenylpropane glycosides	Syringin	-	Immune protection Protection against stress (adaptogen) Antioxidative effects
	Triterpenoids	Oleanic, ursolic and betulinic acid	Induction of apoptosis and cell differentiation, Anti-angiogenesis	Anti-inflammatory + antioxidative effects Immune protection

Whole Extract = Active Ingredient of Mistletoe

Clinical Benefits of Mistletoe Therapy

- Inhibition of malignant growth without harm to healthy tissue
- Increase of endogenous resistance and regulation
- Stimulation of thermoregulation
- Improvement of general condition and performance, irrespective of the local tumor situation
- Decrease of tumor associated pain

Excerpt from "Monography Viscum album", Commission C, Federal Health Administration in Germany, Bundesanzeiger 38 (Nr. 99 a) 55 (04.06.86)

Use of Helixor[®] in Oncology

		Main Indications	Therapeutic Aim	
/	Palliative Therapy	 inoperable or metastasizing cancer 	 improvement of quality 	
	Adjuvant Therapy	 prevention of relapse after surgery or chemotherapy/ radiotherapy 	of life increase of survival 	
	Supportive Therapy	 during chemotherapy or radiotherapy 	 immunoprotection improved tolerance of oncologic therapies 	
	Prophylactic Therapy	 defined precancerous lesions 	 involution of precancerous lesions 	

Indications for Helixor[®]

- All kinds of cancer (all sites and histological types)
- All cancer stages
- At any point in the course of cancer
- After cancer cure for prophylaxis of relapse in secondary or other prevention

Helixor[®] is not aimed at the tumor directly but at the host organism by

- Activating the potencies of resistance, self-healing and regulation
- Protecting the organism from adverse effects of standard therapies
- Significantly enhancing the quality of life

Contraindications to Helixor®

Contraindications	Measures	
Allergy to mistletoe products	As a precaution: no further mistletoe therapy	
Acute inflammatory disease, high fever	Continuation of mistletoe therapy	
Acute hyperthyroidism with tachycardia	after regression of symptoms	
Chronic granulomatous and autoimmune diseases (if florid or treated with immunosuppressants)	Mistletoe therapy only in inactive disease if immunosuppressants are no longer required	

Relevant Oncological Effects of Mistletoe Therapy

	Effects	Mode of Action		
	tumor inhibition	 direct: dose-dependent cytotoxicy (protein synthesis ↓, induction of apoptosis ↑) 		
		 indirect: inhibition of tumor angiogenesis 		
		 indirect: immunologic effector cells ↑ 		
	Immunomodulation (infections ↓)	 number of immunologic effector cells ↑ activity of immunologic effector cells ↑ 		
release of		 release of cytokines ↑ 		
		 Iymphocytes: DNA-stability ↑, DNA-repair ↑ 		
	cytoprotection	- immunosuppressive effect of chemotherapy \downarrow		
	Improvement of quality of life (psychotropic effects)	 β-endorphin[↑] and other neuroendocrine effects restoration of circadian rhythms 		

Cytotoxic Effects of Helixor®

- Dose-dependent inhibition of cell growth as well as induction of cell death
- Malignant cells significantly stronger inhibited than normal cells
- Cytostatic drug-resistant cells stronger inhibited than sensitive cells
- Mechanism: inhibition of ribosomal protein synthesis and induction of apoptosis (intrinsic pathway) mediated by mistletoe lectins
- Proof of efficacy in > 40 different malignant cell lines
- Highest efficacy in breast cancer, leukaemia, myeloma, lymphoma, and prostate cancer
- Strongest *in vitro* effects by Helixor[®] P (M), weakest by Helixor[®] A
- Cytotoxicity is counteracted by anti-mistletoe lectin antibodies which are produced after 2 – 4 weeks mistletoe therapy

Mechanisms of ML-Mediated Cytotoxicity

Protein synthesis inhibition may induce mitochondrial triggers such as RIP and cytochrome C which activate the caspases. Bcl-2 regulates apoptosis by binding of Apaf-1 and by regulating the induction of mitochondrial permeability transition.

DNA-Stabilization by Helixor® A

Publications of Büssing et al.	Journal/Year	
Significant reduction of sister chromatid exchange frequency (= cytogenetic damage, mutagenicity) in PBMC	Eur. J. Cancer 1994	
DNA-protection of PBMC from mutagenic and immunosuppressive effects of cytostatic drugs	Cancer Letters 1995	
DNA-protection only in normal PBMC, whereas in malignant cell-lines the cytotoxic effect of chemotherapy is additionally increased	J. Exp. Clin. Cancer Research 1996	
Also in animal experiments: stronger cytotoxic effect on lung metastases by combination of cyclophosphamide + mistletoe	Forsch. Komplementärmedizin 1996	

DNA-Stabilization and Antimutagenic Effect of Viscum album L. Extracts

Significant decrease in sister chromatid exchanges (SCE) of phytohaemagglutininstimulated peripheral blood mononuclear cells after treatment with Helixor[®] A (p < 0.0001).

A further mechanism of mistletoe anti-tumour-activity?

Klopp, R. et al.: Changes of Microcirculation in the Tumour and in the Peritumoural Tissue after Application of Standardized Mistletoe Extract – DZO 35, 2003, 5 - 14

Changes in the condition of blood microcirculation of the tumour tissue in animals allocated to verum group at various time points of observation (1/1000s, vital microscopic example of finding, detailled picture, EDP processed primary picture in pseudo coloured transformation).

Condition of blood distribution in the microvascular net (capillary vessels, arteriolas, venules) at day 0, prior to application of mistletoe extract.

Condition of blood distribution after treatment by mistletoe extract at day 14.

Klopp, R. et al.: Changes of Microcirculation in the Tumour and in the Peritumoural Tissue after Application of Standardized Mistletoe Extract – DZO 35, 2003, 5 - 14

Changes in the condition of blood microcirculation of the tumour tissue in animals allocated to verum group at various time points of observation (1/1000s, vital microscopic example of finding, detailled picture, EDP processed primary picture in pseudo coloured transformation).

Condition of blood distribution at day 28.

Condition of blood distribution at day 35.

Inhibition of Angiogenesis by Viscum album

	Author	Year	Journal	Model	Test Substance	Result	
	in vitro	in vitro					
	Park, WB. et al.	2001	Cancer Biother. Radiopharm.	chorioallantois- membrane assay	<i>Viscum album</i> coloratum lectin	dose-dependent increase of avascular eggs	
-	Hong, S. et al.	2007	Anti-Cancer Drugs	ECV 304 endothelial cells	Helixor [®] A	70 – 80 % inhibition of neoangiogenesis via induction of thrombospondin-1	
-	Moon, J.M.	2010	Doctoral thesis Seoul Nation. Univ.	eutopic/ectopic endometrial stromal cells	Helixor [®] A	significant decrease of VEGF expression	
	in vivo						
•	Yoon, T.J. et al.	1995	Cancer Letters	B16-BL6 melanoma	<i>Viscum album</i> L. coloratum extract	size of primary tumours ↓, neoangiogenesis ↓	
	Klopp, R. et al.	2003	DZO	NMRI nude mice, human adeno-ca HP29	Helixor [®] P	tumour volume ↓, microcirculation in tumour tissue ↓↓, in surrounding healthy tissue ↑	

Immunological Effects of Viscum album Products

Immunological Effects of Mistletoe Extracts

- Activation of antigen-presenting cells (monocytes, macrophages, dendritic cells)
- Increase of granulocytes: neutrophils, eosinophils after 1 month
- Increase of phagocytosis activity
- Increase and activation of lymphocytes (CD4+ ↑, CD25+ ↑)
- Increase of FasL on lymphocytes
- Increase of Natural Killer (NK) cells and of NK activity
- Modulation of cytokine release: TNF-α, IL-1, IL-6, IL-2, IL12, IFN-γ, IL-4, IL-5, IL-10, GM-CSF
- Induction of antibodies to mistletoe antigens (esp. anti-ML antibodies)

Activation of Dendritic Cells by Standardized Mistletoe Extract (sME)

Activation of Cellular Immune System by Standardized Mistletoe Extract (sME)

The Scientific Basis of Mistletoe Therapy

- Mistletoe belongs to the best investigated herbal medicines
- More than 2,000 scientific publications
- More than 130 clinical studies
- More than 40 prospective-randomized clinical studies

Literature:

- Kienle/Kiene: Die Mistel in der Onkologie, Schattauer 2003
- Kienle/Kiene: Eur J Med Res 2007
- Horneber et al.: Cochrane Review 2008
- Kienle et al.: J Exp Clin Cancer Res 2009
- Kienle/Kiene: Integr Cancer Ther 2010
- Kienle et al.: Forsch Komplementmed 2011

Cochrane Review on Mistletoe Therapy

21 randomised clinical trials (out of a total of 80 clinical studies): n = 3484 randomised patients

Primary Endpoints	n =	benefit of mistletoe therapy found
Quality of life + prevalence of chemotherapy-related adverse events	16	14 of 16
Survival	13	6 of 13
Tumor response	7	2 of 7

Horneber, M.A. et al.: Mistletoe therapy in oncology (review). The Cochrane Collaboration, Wiley 2008
Cochrane-Review on Mistletoe Therapy

Analysis of studies on quality of life: n = 14/16 beneficial

Assessment during chemotherapy (QoL or treatment-related side effects): Positive result: all 9 trials

Assessment during radiotherapy, rehabilitation or sole mistletoe treatment:

Positive result: n = 5 (2 studies on psychosomatic self regulation)

No difference to control group: n = 2 (both studies on sole mistletoe treatment effect)

Analysis of studies on survival: n = 6/13 beneficial

Positive result: n = 6 (among them 1 of 5 studies with an ML-related standard dose 5 of 8 studies with a dose escalation schedule)

No positive result: n = 7 (positive trend: n = 4)

Negative result: n = 0

Antitumoral effects: only in studies with higher dosage and long-term therapy > 1 year

Horneber, M.A. et al.: Mistletoe therapy in oncology (review). The Cochrane Collaboration, Wiley 2008

Cochrane-Review on Mistletoe Therapy

Statement on drug safety of mistletoe products:

12 prospective randomized studies (total 2,978 patients) with data on drug safety:

 local inflammatory reactions at the s.c. injection site in up to 1/3 of the patients

•systemic reactions (fever, flu-like symptoms) in approx. 10 %

serious adverse reactions are seldom

•no evidence of negative influences on survival of cancer patients

Analysis of Clinical Studies with Helixor®

RCTs on Mistletoe Therapy of Cancer Assessment of Methodological Study Quality

Autor, Jahr Methodological Criteria Results Loss n C) E) G) K) A) B) D) F) H) J) I) **Piao 2004** 4% (-)(+)233 S + + + + + + + + Auerbach 2005 s, t, 0 (+) (+) (+)(+)23 17-30% + + + + + — _ Grossarth 2001 34 0% + + (-)+ (-)S + + + + _ Dold 1991 (+)17% (-)(-) 337 t, t, s + + + + + + _ Lange 1985 (-) (-)(+)68 35% + + + + + + S _ (+)Borrelli 2001 + (+) (+) + + + (-)(+) 30 0% S _ _ 20% Grossarth 2001 (-)78 + + (-)+ + (-)+ + S Kleeberg 2004 (-) (+) (+)204 (+)(+)24% -t + + (-)(-)+ Salzer 1991 (+)(+) (-)(+)210 16% (+)+ (-)+ + 0% **Douwes 1986** t (+)60 + (-)+ + + + _ _ _ Gutsch 1988 (+)677 20% (-)(-)+ + + + + S Salzer 1979, 1983 (-) (+)(+)137 57% + + + + S _ Cazacu 2003 (+)(-) (+)(+)(-)64 n.s.^{IV} + + S — — — _ Salzer 1987 t (+)50 48% + (-)+ +

Acc. to Kienle et. al.: Anthroposophic Medicine – Effectiveness, utility, costs, safety; Schattauer Stuttgart 2006

Benefit for Patients with Advanced Tumors Receiving revise the top or she rape Tumoren von der Therapie mit einem Mistel-Gesamtextrakt*?

Quality of "Interimption in Vorbertung" Interimption of the state of t

In Vivo Efficacy of HELIXOR (BALB/c-Mice with L-1-Sarcoma)

Source: Braun, J.M. et al.: Cancer letters 170, 2001, 25-31

Single 50 ug injection over 8 weeks

before

after

- prospective-randomized multicenter study -

Objectives:

- Influence of Helixor[®] on quality of life of cancer patients and on side effects of chemotherapy compared with Lentinan[®] (immunostimulating injection product made of shiitake mushroom)
 QoL: Karnofsky Performance Index = KPI Functional Living Index Cancer = FLIC Traditional Chinese Medicine (= TCM) Index
 - Safety of Helixor[®]

Study:

Multicentric, prospective, randomized, open

Indication:

Non-small cell lung (n = 94), breast (n = 68), ovarian (n = 71) cancer

General Results / Quality of Life

FLIC = Functional Living Index Cancer, *TCM-Score* = Traditional Chinese Medicine Score, *KPI* = Karnofsky Performance Index

Piao, B.K. et al.: Anticancer Research 24, 2004, 303-310

Adverse and Serious Adverse Events

Piao, B.K. et al.: Anticancer Research 24, 2004, 303-310

Results:

• Significant increase of quality of life through complementary Helixor[®] therapy compared to the control group (large compliance of the results within the 3 different indices for recording quality of life)

Significantly less side effects of chemotherapy
(i. a. nausea, vomiting, bone marrow depression, infections)

Good tolerance and low rate of side effects with Helixor[®] A
 7 x local reaction > 5 cm Ø at s.c. injection site
 4 x fever

1 x angioedema and nettle rash

Which QoL-variables are significantly improved with Helixor[®] therapy?

- Fatigue
- Insomnia
- Anorexia
- Nausea
- Pain
- Physical activity

Therapy Guidelines

Helixor[®]-Selecting and Changing Types

chemotherapy/radiotherapy: Implication of P, if none of the recommendations for Helixor® A applies and a stronger immune stimulation is desired. For further information please contact our medical advisory service.

Subcutaneous Injection of Helixor®

Local Skin Reaction at Subcutaneous Injection Site

- Redness, swelling, subcutaneous induration (infiltration by activated T-helper cells)
- Maximum size 48 72 hours after injection (delayed-type immune reaction), strictly dose-dependent
- Important indicator during induction therapy showing an immunologically effective dosage
- Mediated by mistletoe lectins (MLs)
 - \rightarrow will disappear when anti-ML-antibodies are increasing

Local Skin Reaction to Subcutaneous Helixor[®]

Typical site of injection

Local erythema, appr. 12 h p.i.

Local erythema, appr. 3 x 5 cm, 6 h p.i.

Slight induration, appr. 24 h p.i.

Desired local reaction

Excessive local reaction

Measures in Case of a Local Skin Reaction

1) Local inflammation \leq 5 cm diameter

- Next injection not before local skin reaction of the last injection has disappeared
- Maintenance of the last dose as long as each injection is followed by a reaction
- Further stepwise dose increase according to the schedule - as soon as no reaction occurs any longer

Measures in Case of a Local Skin Reaction

2) Local inflammation > 5 cm diameter

Therapy pause until redness and swelling have disappeared

Dose reduction

Maintenance of this reduced dose,

as long as there is redness and swelling < 5 cm after injection

Further stepwise dose escalation,

as soon as no reaction occurs any longer

Subcutaneous Injection of Helixor®

The following injection sites should be avoided:

- Focus of inflammation and its surrounding
- Operation scar
- Radiation field
- Breast cancer: breast and arm of the operated side

Basic Rules of Mistletoe Dosage

- 1) Slow dose escalation (induction therapy)
 - \rightarrow To avoid side effects
 - \rightarrow To find out optimal dosage
- 2) Individual maintenance dosage according to
 a) Cancer stage
 b) The patient's reaction
- 3) Rhythmic dose variation and interpolation of pauses \rightarrow To avoid tolerance
- 4) Sufficient continuance of maintenance therapy

Choice of Injection Intervals

	Injections	Pauses
Adjuvant Therapy	3 x 1 amp. s.c./week	After 4 weeks 14 days pause
Palliative Therapy	Good general state of health: 3 x 1 amp. s.c./week Reduced general state of health, rapid progression: daily injection	No!

- I. In case of adjuvant therapy (prevention of relapse after curative surgery):
 - Intensive treatment in the first two years, followed by phasing out:
 - \Rightarrow From the third year: only 2 injections per week
 - \Rightarrow Third year: 3 weeks pause after every 4 cycles
 - \Rightarrow Fourth year: 4 weeks pause after every 4 cycles
 - \Rightarrow Fifth year: 8 weeks pause after every 4 cycles
- II. In case of palliative treatment after palliative surgery, in metastasizing cancer:
 - No breaks
 - Helixor[®] as a permanent, palliative treatment

Dosage schedule for heme CA's (leukemia, lymphoma, myeloma)

HELIXOR A daily injection: Initial Therapy

Week 1	1-1-1-1-1 mg
Week 2	5-5-5-5-5-5 mg
Week 3	10-10-10-10-10-10mg
Week 4	10-10-20-20-30-30-30mg
Week 5	20-20-30-30-50-50-50mg
Week 6	70-70-80-80-100-100-100mg

Dosage schedule for heme CA's (leukemia, lymphoma, myeloma)

Maintenance Therapy

Chronic lymphocytic leukemia, low-grade non-Hodgkin's lymphoma, Hodgkin's lymphoma stage la - Illa, multiple myeloma

 \rightarrow 150mg daily

Chronic myeloid leukemia, acute leukemia, high-grade non-Hodgkin's lymphoma, Hodgkin's lymphoma stage lb – IIIb, IV

 \rightarrow 200mg daily

Response Criteria

A) Adjuvant Therapy (prevention of relapse)

- 1. Local reaction at subcutaneous injection site
- 2. Increase in body temperature
- 3. Improvement of general condition
- 4. Increase in WBC count: WBC, eosinophils, lymphocytes
- B) Palliative Therapy (metastasizing tumors) additionally
- 5. Inhibition of tumor growth

Adverse Drug Reactions (ADR) to Mistletoe Products

- most often: harmless and self-limiting
- very rare: serious ADRs
- as a rule: most ADRs are nothing else than desired pharmacological effects exceeding the desirable level
 - in very sensitive patients
 - after overdosing or
 - after a too rapid dose increase

Adverse Drug Reactions to Mistletoe Products

Adverse drug reactions	Measures
Inflammatory local reaction at sc injection site > 5 cm	Therapy pause until the symptoms
Fever > 38 °C, flu-like symptoms	 subside Dose reduction
Swelling of regional lymph nodes	No anti-inflammatory or antipyretic drugs
Allergic reaction (urticaria/nettle rash > exanthema > angioneurotic edema > dyspnea > anaphylaxis)	 Usual anti-allergic therapy Discontinue mistletoe product
Activation of inflammation (and other rare events)	 Therapy pause until the symptoms subside Removal of the focus of inflammation

Different modes of application of HELIXOR

	Therapeutic aims	Importance
Subcutaneous injection	immunomodulation	usual application
Intravenous infusion	easing the pain, inhibition of cancer growth when other therapies are ineffective	experimental therapy (not yet proven in clinical trials)
Intrapleural instillation	killing cancer cells in the pleural cavity, pleurodesis	proven in longstanding clinical experience and two clinical trials
Intraperitoneal instillation	killing cancer cells in abdominal cavity, inhibition of ascites production	few clinical experiences
Intratumoral injection	tumor necrosis, followed by strong immunological reaction	experimental therapy (only animal studies performed)

Other Modes of Helixor[®] Administration Besides SC Injection

Mode of Administration	Indication	
Intravenous infusion	Progressive metastasizing cancer	
Intrapleural instillation	Malignant pleural effusion	
Intraperitoneal instillation	Malignant ascites	
Intralesional infiltration	Inoperable cancer	
Intravesical instillation	Superficial bladder cancer	

Helixor[®] Intravenous Infusion

Not yet registered but supported by the German monograph "Viscum album" (Commission C)

Indication:

- progressive metastasizing cancer
- in which an effective standard treatment is not available/feasible
- refractory tumor pain
- rapid deterioration of general condition
- as an adjunctive to chemotherapy for reduction of toxicity

Contraindication:

- acute inflammatory disease, high fever
- allergy to mistletoe preparations
- floride autoimmune disease
- symptomatic hyperthyroidism
- gravity (precaution)

Helixor[®] Intravenous Infusion

Not yet registered but supported by the German monograph "Viscum album" (Commission C)

Precautions:

- pretesting with 0.1 ml out of ${\rm Helixor}^{\scriptstyle (\! R\!)}$ M 1 mg for exclusion of allergy
- very strict indication
- close monitoring of signs of an allergic reaction (esp. in patients with former SC mistletoe therapy)
- drugs for emergency treatment must be available

0	
Frequency	 1-3x/week with or without additional SC administration at days without infusion. Daily infusion over 2 weeks in case of rapid deterioration of general condition. immediately before and during administration of chemotherapy for reduction of toxicity.
Drip speed	 26 drops/minute = 3 hours of infusion

Helixor[®] M Intravenous Infusion

Intravenous Infusion Protocols

Frequency:

- 1. 1-2x/week plus s.c. application on days without infusion
- 2. 3x/week if there is no s.c. application

Other:

- 40 drops/minute ~ 2 hours of infusion
- i.v. dosage 250ml isotonic sodium chloride solution with 50mg HELIXOR
- s.c. dosage 100-200mg 2-3x/week
- Iong-term application is possible; in case of remission continue only with s.c. application

Thank you for your attention!